

Baugrunduntersuchung

Neubau nichtunterkellerte Ferienlodges Oberer Gallenweilerweg Flurstück: 1452 79219 Staufen im Breisgau

> Auftraggeber: Vinea GmbH & Co. KG Mittelstraße 8 79189 Bad Krozingen

> > über:

Architekturbüro Sennrich & Schneider Rheinuferstraße 10a 79206 Breisach am Rhein

Projekt Nr.: 23 14 16

Geoconsult Ruppenthal GmbH Ellen-Gottlieb-Straße 15°79106 Freiburg

www.geoconsult-ruppenthal.de info@gc-ruppenthal.de Tel.: 0761 – 611 66 67 0 Fax.: 0761 / 611 66 67 9

Inhaltsverzeichnis

1	Veranlassung und Untersuchungsumfang	1									
2	Unterlagen	1									
3	Erdbebenkräfte2										
4	Lage, geologischer Überblick und Rammkernprofile2										
5	Bodenklassifizierung3										
6	Bodenmechanische Kennwerte	6									
7	Gründungstechnische Beurteilung	Gründungstechnische Beurteilung									
8	Hydrogeologische Situation8										
9	Bodenanalytik										
10	Abschließende Bemerkungen										
Zusammenfassung13											
Anlag	gen: 1 Übersichtslageplan	M: 1:25.000									
Timag	2 Ansatzpunkte RKS 1-8	M: 1:1.000									
	3 Profile der Rammkernsondierungen 1-8	M: 1:15									
	4 Profilschnitt (Schnitt Lodges Varianten)	M: 1:50									
	5 Bemessung Einzel- und Streifenfundamente										
	6 Versickerungsversuch										
7 Analyseergebnisse											

1 Veranlassung und Untersuchungsumfang

GEOCONSULT RUPPENTHAL GmbH, Ellen-Gottlieb-Straße 15, 79106 Freiburg, wurde von der Bauherrschaft, der Vinea GmbH & Co. KG, Mittelstraße 8, 79179 Bad Krozingen, vertreten durch Silke & Peter Rombach, über das Architekturbüro Sennrich & Schneider, Rheinuferstraße 10A, 79206 Breisach am Rhein, mit der Baugrunduntersuchung für den geplanten Neubau von nichtunterkellerten Ferienlodges, Oberer Gallenweilerweg, Flurstück 1452, nach EC 7 und DIN 4020 beauftragt. Zusätzlich soll auf dem Grundstück ein Badeteich angelegt werden. Hierzu wurde in diesem Bereich der Boden auf Schadstoffe beprobt.

Das geplante Bauvorhaben ist gemäß EC 7 der geotechnischen Kategorie GK 1 zuzuordnen.

Am 13.03.2023 wurden acht Rammkernsondierungen (RKS 1-8; Ø 50 mm), eine im Bereich des geplanten Badeteiches (**RKS 1**), sowie sieben Sondierungen an den vorgesehenen Positionen der Lodges (**RKS 2-8**), bis maximal 3,5 m u. GOK, zur Beurteilung der Boden- und Grundwasserverhältnisse niedergebracht (s. Anl. 2 u. 3).

Aus den RKS wurden horizontierte Bodenproben entnommen. Aus der RKS 1 wurde eine Bodenmischprobe (BMP 1) aus dem Auelehm und Schwemmlöss erstellt und zur Vordeklaration von anfallendem Aushubmaterial nach VwV, Tab. 6-1 im akkreditierten Labor analysiert (s. Anl. 7).

2 Unterlagen

Als Arbeitsgrundlagen standen folgende Unterlagen zur Verfügung:

Topographische Übersichtskarte
 Geologische Karte von Baden-Württemberg, Blatt 8112, Staufen i. Br. (1999)
 Lageplan
 Grundrisse und Schnitte
 M: 1:25.000
 M: 1:500
 M: 1:50

- Schichtenverzeichnis der RKS 1-8

- Geotechnisches und hydrogeologisches Archiv, IB Geoconsult Ruppenthal

3 Erdbebenkräfte

Das Bauvorhaben liegt nach der Karte Erdbebenzonen von Baden-Württemberg in Zone 2. Für statische Berechnungen sind folgende Werte nach DIN 4149 anzusetzen.

- Bemessungswert Bodenbeschleunigung:

 $a_g = 0.60 \text{ m/s}^2$

- Untergrundklasse zur Berücksichtigung des tieferen Untergrundes:

S

- Baugrundklasse zur Berücksichtigung der örtlichen Baugrundeigenschaften:

 \mathbf{C}

4 Lage, geologischer Überblick und Rammkernprofile

Das zu untersuchende Grundstück befindet sich östlich der Straße "Oberer Gallenweilerweg", rd. 750 m nordöstlich von Heitersheim. Das ehemalige Militärgelände ist rd. 200 m lang und befindet sich auf einer Höhe von rd. 260-270 m ü. NN. Auf diesem befinden sich derzeit ein Wohnhaus, ein ehemaliges Kasernengebäude, Lagerschuppen, zwei Kraftstoffsilos mit rd. 20 m Durchmesser und 10 m Höhe, sowie Stellflächen für landwirtschaftliche Maschinen. Die Kraftstoffbehälter werden derzeit für die Lagerung landwirtschaftlicher Erzeugnisse genutzt.

Der Standort befindet sich, übereinstimmend mit der geologischen Karte von Baden-Württemberg, Blatt 8112 Staufen im Breisgau (1999), im Bereich von Lössablagerungen.

Im nördlichen, tiefer gelegenen Bereich des Geländes (RKS 1) finden sich Flussablagerungen.

Im Bereich des Baufensters ergaben die Bodenuntersuchungen folgenden Schichtaufbau:

<u>Schicht 1, Mutterboden:</u> In allen RKS wurde bis rd. 0,4 m u. GOK durchwurzelter, belebter Oberboden (Mutterboden) angetroffen.

<u>Schicht 2, Auffüllung:</u> In RKS 7 liegt bis 2,7 m u. GOK ein erdfeuchter, dicht gelagerter, sandiger, schluffiger, schwach toniger Kies von brauner Farbe mit einzelnen Ziegelresten. Im Bereich der Auffüllung liegen alte Fundamente.

<u>Schicht 3, Lösslehm:</u> In den RKS 2-6 u. 8 liegt unterhalb des Mutterbodens verwitterter, erdfeuchter, feinsandiger, toniger Schluff von halbfester Konsistenz.

<u>Schicht 4, Löss:</u> In den **RKS 2-8** steht bis zur jeweiligen Endteufe ein halbfester, erdfeuchter, brauner, feinsandiger Schluff.

Hinweis:

Die Schichten 5 u. 6 stehen nur in **RKS 1** im nördlichen, tiefer gelegenen Bereich beim geplanten Badesees an. Hier wurde zur Analyse anfallenden Aushubs beprobt, jedoch sind diese Schichten für die Gründungstechnik des Bauvorhabens nicht relevant.

<u>Schicht 5, Auelehm:</u> In RKS 1 im tiefergelegenen, nördlichen Baufeld steht bis rd. 1,0 m u. GOK ein schluffiger, feinsandiger, erdfeuchter Ton von steifer bis halbfester Konsistenz an.

<u>Schicht 6, Schwemmlöss:</u> Unterhalb des Auelehms in **RKS 1** steht bis zur Endteufe erdfeuchter, halbfester, feinsandiger, schwach toniger Schluff von grauer Farbe an.

5 Bodenklassifizierung

Als Höhenreferenzpunkt (\pm 0,00 m) wurde die Deckeloberkante des Schachts am östlichen Kraftstofftank festgelegt. Nach den Ergebnissen der Rammkernsondierungen 1-8 kann das Bodenprofil in folgende Schichten eingeteilt werden:

Tab. 1A: Bodenklassifizierung der angetroffenen Schichten

Schicht	Ansatzh	öhe der Sondie Schichttiefen	Kurzzeichen	Bodenklasse		
	RKS 1 [-7,70]	RKS 2 [-1,64]	RKS 3 [-2,73]	RKS 4 [-3,28]	DIN 18196	DIN 18300
Auffüllung	-	-	-	-	GU	3
Mutterboden	0,0-0,4	0,0-0,4	0,0-0,4	0,0-0,4	OU	1
Auelehm	0,4-1,0	-	-	-	TL	4
Schwemmlöss	1,0-3,5 (ET)	-	-	-	UL	4
Lösslehm	-	0,4-1,0	0,4-0,9	0,4-1,1	UL	4
Löss	-	1,0-3,5 (ET)	0,9-3,5 (ET)	1,1-3,5 (ET)	UL/SU*	3-4

(ET = Endteufe)

Tab. 1B: Bodenklassifizierung der angetroffenen Schichten

Schicht	Ansatzh	öhe der Sondie Schichttiefen	Kurzzeichen	Bodenklasse		
	RKS 5 [-3,88]	RKS 6 [-4,28]	RKS 7 [-3,68]	RKS 8 [-3,44]	DIN 18196	DIN 18300
Auffüllung	-	-	0,0-2,7		GU	3
Mutterboden	0,0-0,4	0,0-0,4		0,0-0,4	OU	1
Auelehm	-	-	-	-	TL	4
Schwemmlöss	-	-	-	-	UL	4
Lösslehm	0,4-1,1	0,4-1,3	-	0,4-1,0	UL	4
Löss	1,1-3,5 (ET)	1,3-3,5 (ET)	2,7-3,5 (ET)	1,0-3,5 (ET)	UL/SU*	3-4

(ET = Endteufe)

Die Einteilung in Bodenklassen erfolgt anhand der DIN 18300 alt.

Tab. 2: Boden- und Felsklassen nach DIN 18300

- Klasse 1: Oberboden bzw. Mutterboden: oberste Schicht des Bodens, die neben anorganischen Stoffen (Kies-, Sand-, Schluff- und Tongemische) Humus und Bodenlebewesen enthält.
- Klasse 2: Fließende Bodenarten: Bodenarten von flüssiger bis breitiger Beschaffenheit und die das Wasser schwer abgeben
- Klasse 3: Leicht lösbare Bodenarten: nichtbindige bis schwach bindige Sande, Kies und Sand-Kies Gemische mit bis zu 15 Gew. -% Beimengungen an Schluff und Ton (Korngröße ≤ 0,06 mm) und mit höchstens 30 Gew.-% Steinen von über 63 mm Korngröße bis zu 0,01 m³ Rauminhalt (entspr. Durchmesser von ca. 0,3 m).
- Klasse 4: **Mittelschwer lösbare Bodenarten:** Gemische von Kies, Sand, Schluff und Ton mit einem Anteil von mehr als 15 Gew.-% Korngrößen < 0,06 mm, sowie bindige Bodenarten von leichter bis mittlerer Plastizität (TL, TM nach DIN 18196), je nach Wassergehalt weich bis fest, max. 30 Gew.-% Steine > 63 mm bis 0.01 m³ Rauminhalt.
- Klasse 5: **Schwer lösbare Bodenarten:** Bodenarten nach Klasse 3 und 4 mit mehr als 30 Gew.-% Steinen über 63 mm bis 0,01 m³ Rauminhalt und höchstens 30 Gew.-% 0,01 m³ bis 0,1 m³ Rauminhalt sowie ausgeprägt plastische Tone.
- Klasse 6: Leicht lösbarer Fels und vergleichbare Bodenarten: Felsarten, mineralisch gebunden, die jedoch stark klüftig, weich oder verwittert sind, sowie Bodenarten die vergleichbar verfestigt sind.
- Klasse 7: Schwer lösbarer Fels: wenig klüftige bzw. verwitterte Felsarten und verfestigte Materialien.

Tab. 3: Bodenklassifizierung, Homogenbereiche:

Schicht	Bodengruppe	Verdichtbarkeitsklasse	Homogenbereich		
Schicht	DIN 18196	ZTV A-StB 97	Erdarbeiten DIN 18300 (2015)		
Auelehm	TL	V3	E1		
Schwemmlöss	UL	V3	E2		
Lösslehm	UL	V3	E3		
Löss	UL/SU*	V2-V3	E4		

Der Vorschlag für die Einteilung in Homogenbereiche erfolgt anhand Erfahrungs- und Literaturwerten. Sofern eine genaue Klassifikation erforderlich ist, sollten ggf. die zusätzlich nötigen Laborversuche angesetzt und durchgeführt werden. Gerne stehen wir Ihnen hierbei beratend zur Seite.

Der Mutterboden sollte abgezogen und auf einer separaten Miete angehäuft werden. Mutterboden, der bei der Errichtung und Änderung baulicher Anlagen sowie bei wesentlichen anderen Veränderungen der Erdoberfläche ausgehoben wird, ist in nutzbarem Zustand zu erhalten und vor Vernichtung oder Vergeudung zu schützen (§ 202 BauGB).

Anfallendes Aushubmaterial aus der Auffüllung (GU) sollte auf einer von den anderen Schichten separaten Miete angehäuft werden. Nach Verifizierung durch den Bodengutachter ist diese für einen verdichteten Wiedereinbau geeignet.

Anfallendes Aushubmaterial aus dem Bereich von Auelehm, Schwemmlöss und Lösslehm ist aus geotechnischer Sicht nicht für einen verdichteten Wiedereinbau geeignet, kann aber in nichttragenden Bereichen (bspw. Grünstreifen) zur Geländemodellierung verwendet werden.

Anfallendes Aushubmaterial aus dem Bereich des Löss ist ohne Verbesserungsmaßnahmen (bspw. Kalkung) aus geotechnischer Sicht nicht für einen verdichteten Wiedereinbau geeignet.

Für Verfüllungen, Geländemodellierungen oder Bodenaustausch sind die lokalen umweltrelevanten Richtlinien und Vorgaben (unter anderem WSG, BBodSchV) zu beachten.

6 Bodenmechanische Kennwerte

Die bodenmechanischen Rechenwerte, die für die erdstatischen Berechnungen herangezogen werden können, sind in Tabelle 4 zusammengestellt.

Hier sind Wertebereiche angegeben, die den Schwankungsbereich der Rechenwerte in Abhängigkeit von der variierenden Zusammensetzung des Bodenmateriales widerspiegeln.

Zur Sicherheit sind die für die jeweiligen Berechnungen ungünstigeren Rechenwerte den statischen Berechnungen zu Grunde zu legen.

Tab. 4: Bodenmechanische Kennwerte (DIN 1055 Teil 2 bzw. Grundbautaschenbuch Teil 1)

Kurzzeichen nach	Wio	chte	Reibungswinkel	Kohäsion	Steifemodul
DIN 18196	Über Wasser cal γ [kN/m³]	Unter Wasser cal γ` [kN/m³]	cal φ [Grad]	cal c`[kN/m²]	cal Es [MN/m²]
Auelehm, (TL, halbfest)	19,0-22,0	9,5-12,0	24-32	10-35	20-50
Schwemmlöss, (UL, halbfest)	17,5-21,0	9,5-11,0	28-35	5-15	20-50
Lösslehm, (UL, halbfest)	17,5-21,0	9,5-11,0	28-35	5-15	20-50
Löss, (UL/SU*, halbfest)	17,5-21,0	9,0-11,0	28-35	5-10	20-50

Frostempfindlichkeit der gründungsrelevanten Schichten nach ZTVE-STB 94:

➤ Auelehm (TL):
 F3 (sehr frostempfindlich)
 ➤ Schwemmlöss (UL):
 F3 (sehr frostempfindlich)
 ➤ Lösslehm (UL):
 F3 (sehr frostempfindlich)
 ➤ Löss (UL/SU*):
 F3 (sehr frostempfindlich)

Die Konsistenzen der bindigen Böden (**Auelehm**, **Lössböden**) hängen in erster Linie von ihrem Wassergehalt ab. Grundlegend gilt: Je höher der Wassergehalt, desto schlechter die Konsistenz. Entsprechend sind die festgestellten Konsistenzen als Momentaufnahmen zu sehen und können je nach Witterungsverhältnis lokale Unterschiede aufweisen. Die Konsistenzen am Sondiertag sollten im Zuge der Sohlabnahme verifiziert werden.

7 Gründungstechnische Beurteilung

Das geplante Bauvorhaben ist gemäß EC 7 der geotechnischen Kategorie GK 1 zuzuordnen.

Die Ferienlodges sollen nach den Planunterlagen (Stand 27.03.2023) in einer Höhe von rd. 2,25 m oberhalb des Geländes errichtet und über Stahlträger (HEA 120) und Schraubfundamente im Boden verankert werden. Eine Einbindetiefe in den Untergrund ist derzeit nicht bekannt. Die Lodges werden ein- bzw. zweigeschossig aus Holz gebaut.

Da Lössböden unter Belastung thixotrop (belastungsempfindlich) reagieren können, sollte die Baugrubensohle so wenig wie möglich mit schwerem Gerät befahren oder mit dynamischer Verdichtung bearbeitet werden. Etwaige Baugrubensohle sowie Böschungen sollten, durch Abdeckung mit Planen, möglichst vollständig vor Nässe geschützt werden.

Der Mutterboden sollte im Bereich der Fundamente ausgehoben und auf einer separaten Miete aufgehäuft werden.

Wir empfehlen, die Lasten über Einzelfundamente in den Löss abzusetzen (rd. 1 m u. GOK). Die Lasten im Bereich der **RKS** 7 können in die dicht gelagerte Auffüllung (GU) abgesetzt werden.

Für die **Bemessung von Einzel- bzw. Streifenfundamenten** können unter Einhaltung der nach EC 7 geforderten Teilsicherheitsbeiwerte für Einwirkung und Widerstände, in Abhängigkeit von Einbindetiefe, die für eine bestimmte Fundamentbreite gültigen Bemessungswerte des Sohlwiderstandes und die zugehörige rechnerisch zu erwartende Setzung aus den Fundamentdiagrammen in Anlage 5 entnommen werden. Für die Bemessung in Anlage 5 wurde eine Einbindetiefe von 0,5 m in den halbfesten Löss (UL/SU*) angesetzt.

Aufgrund der erhöhten Bauweise sowie der Gründung über Einzelfundamente ist nicht mit einer Baugrube zu rechnen.

8 Hydrogeologische Situation

Grundwasserverhältnisse:

Am Sondiertag wurde bei mittleren bis niedrigen Grundwasserverhältnissen in den Rammkernsondierungen kein Grundwasser angetroffen.

In der rd. 1.000 m nordöstlich gelegenen Grundwassermessstelle "GWM 3648 Wettelbrunn, Heitersheim-Gallenweiler"(0104/071-8) wurde ein höchster Grundwasserstand (HHGW) von 257,14 m ü. NN (12.02.1979) und ein niedrigster Grundwasserstand (NNGW) von 251,70 m ü. NN (11.01.2021) gemessen. Somit ist ein maximaler Grundwasserschwank von rd. 5,6 m anzunehmen.

Das Flurstück liegt exponiert auf einem Lösshügel, welcher in alle Richtungen rd. 10 m abfällt. Mit Einfluss von Grundwasser auf das Bauvorhaben ist demnach nicht zu rechnen.

Bemessungswasserstände:

Im Bereich der anstehenden, schlecht bzw. bedingt durchlässigen, bindigen Böden (Lösslehm/Löss) kann aufstauendes Sickerwasser bis Geländeoberkante nicht ausgeschlossen werden. Der Bemessungswasserstand (HHW) ist in diesem Fall auf GOK anzusetzen.

Der Bemessungswasserstand (HHW) nimmt Einflüsse von Oberflächenwässer (Sicker- und Niederschlagswasser) auf und steht in Wechselwirkung zur hydraulischen Leitfähigkeit der oberflächig anstehenden Böden. Dieser Wert ist maßgebend bei der Bauwerksabdichtung.

Der Bemessungs**grund**wasserstand (**HHGW**) lässt den Einfluss von Oberflächenwasser außen vor und bezieht sich nur auf den Grundwasserleiter sowie dessen angenommenen höchsten Stand. Bauwerke, die in diesen Höchststand einbinden, stehen über längere Zeiträume im Grundwasser und sind demnach unter Einfluss von Auftriebskräften. Der HHGW ist entsprechend die, für die Berechnung von statischen Auftriebskräften, maßgebende Größe.

Bauwerksabdichtung:

Die Lodges werden ohne Kontakt zum Erdboden errichtet. Es sind keine weiteren Maßnahmen zur Bauwerksabdichtung zu treffen.

Hochwasser- und Wasserschutzgebiete:

Das Grundstück befindet sich außerhalb von Hochwasser-Überflutungsflächen, sowie außerhalb von Wasserschutzgebieten.

Hydraulische Leitfähigkeit:

Zur Ermittlung des Durchlässigkeitsbeiwertes " k_f " wurde in RKS 4 im Lösshorizont ein Sickerversuch durchgeführt (s. Anl. 6).

Es wurde die Methode nach Earth Manual 1974 (Heitfeld, K.-H. et al., 1979) angesetzt. Im Bohrloch mit Radius "r" wird die gewünschte Aufstauhöhe "h" über die geologische Situation festgelegt. Nun wird durch Wasserzufluß "Q" die Aufstauhöhe "h" mit Abstand "H" zum Grundwasser gehalten. Über die Schüttung "Q" im beharrten Zustand kann der Durchlässigkeitsbeiwert "kf" berechnet werden. Der Bohrlochhalbmesser ist durch die Sondierung mit 0,025 m vorgegeben.

Der Sickerversuch ergab somit für den anstehenden Löss (UL/SU*) einen Durchlässigkeitsbeiwert von 5,35 x 10⁻⁶ m/s. Nach DWA-A 138 ist der aus Feldmethoden ermittelte kf-Wert mit einem Korrekturfaktor von 2 zu begünstigen. Damit ergibt sich ein Bemessungs-kf-Wert von 1,07 x 10⁻⁵ m/s. Nach DIN 18130, T1, ist der Löss als durchlässig einzustufen. Zur Bemessung einer Versickerungsanlage sind die Vorgaben der DWA-A 138 zugrunde zu legen.

9 Bodenanalytik

Aus den Rammkernsondierungen wurden horizontierte Bodenproben entnommen. Daraus wurde eine Bodenmischprobe aus Auelehm und Schwemmlöss aus **RKS 1 (BMP 1)** angefertigt und nach VwV, Tab. 6.1 zur Vordeklaration von anfallendem Aushubmaterial im Feststoff und Eluat im akkreditierten Labor analysiert (s. Anl. 7).

Tab. 5: Analyseergebnisse Bodenmischproben BMP 1-VwV Ton

Bezeichnung	Einheit	BG	BMP 1	Z0	Z0* IIIA	Z0*	Z1.1	Z1.2	Z2	
Anzuwendende Klasse:			ZO							
Anionen aus der Originalsubstanz	<u> </u>								•	
Cyanide, gesamt	mg/kg TS	0,5	< 0,5				3	3	10	
Elemente aus dem Königswasser	aufschluss na	ch DIN EN	13657: 200							
Arsen (As)	mg/kg TS	0,8	12,2	20	15	20	45	45	150	
Blei (Pb)	mg/kg TS	2	50	100	100	140	210	210	700	
Cadmium (Cd)	mg/kg TS	0,2	0,3	1,5	1	1	3	3	10	
Chrom (Cr)	mg/kg TS	1	33	100	100	120	180	180	600	
Kupfer (Cu)	mg/kg TS	1	18	60	60	80	120	120	400	
Nickel (Ni)	mg/kg TS	1	33	70	70	100	150	150	500	
Quecksilber (Hg)	mg/kg TS	0,07	< 0,07	1	1	1	1,5	1,5	5	
Thallium (TI)	mg/kg TS	0,2	< 0,2	1	0,7	0,7	2,1	2,1	7	
Zink (Zn)	mg/kg TS	1	58	200	200	300	450	450	1500	
Organische Summenparameter a		alsubstanz								
EOX	mg/kg TS	1,0	< 1,0	1	1	1	3	3	10	
Kohlenwasserstoffe C10-C22	mg/kg TS	40	< 40			200	300	300	1000	
Kohlenwasserstoffe C10-C40	mg/kg TS	40	< 40	100	100	400	600	600	2000	
BTEX und aromatische Kohlenwa		s der Origi	nalsubstanz	Z	•					
Summe BTEX	mg/kg TS		(n. b.)	1	1	1	1	1	1	
LHKW aus der Originalsubstanz			•	•						
Summe LHKW (10 Parameter)	mg/kg TS		(n. b.)	1	1	1	1	1	1	
PAK aus der Originalsubstanz			•	•						
Benzo[a]pyren	mg/kg TS	0,05	< 0,05	0,3	0,3	0,6	0,9	0,9	3	
Summe 16 EPA-PAK exkl. BG	mg/kg TS	•	(n.b.)	3	3	3	3	9	30	
PCB aus der Originalsubstanz				•	•					
Summe 6 DIN-PCB exkl. BG	mg/kg TS		(n.b.)	0,05	0,05	0,1	0,15	0,15	0,5	
Physchem. Kenngrößen aus den		eleluat na	ch DIN EN 1	12457-4: 20	03-01					
pH-Wert			8,4	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12	
Leitfähigkeit bei 25°C	μS/cm	5	113	250	250	250	250	1500	2000	
	Anionen aus d	dem 10:1-S	chüttelelua	at nach DIN	EN 12457-	4: 2003-01				
Chlorid (Cl)	mg/l	1,0	1,2	30	30	30	30	50	100	
Sulfat (SO4)	mg/l	1,0	1,5	50	50	50	50	100	150	
Cyanide, gesamt	μg/l	5	< 5	5	5	5	5	10	20	
Elemente aus dem 10:1-Schüttele		N EN 1245)1						
Arsen (As)	μg/l	1	< 1		14	14	14	20	60	
Blei (Pb)	μg/l	1	< 1		40	40	40	80	200	
Cadmium (Cd)	μg/l	0,3	< 0,3		1,5	1,5	1,5	3	6	
Chrom (Cr)	μg/l	1	< 1		12,5	12,5	12,5	25	60	
Kupfer (Cu)	μg/l	5	< 5		20	20	20	60	100	
Nickel (Ni)	μg/l	1	< 1		15	15	15	20	70	
Quecksilber (Hg)	μg/l	0,2	< 0,2		0,5	0,5	0,5	1	2	
Zink (Zn)	μg/l	10	< 10		150	150	150	200	600	
Org. Summenparameter aus dem				2457-4: 200						
Phenolindex, wasserdampffl.	μg/l	10	< 10	20	20	20	20	40	100	
	F-0/ ·									

Nach den vorliegenden Analysen der Bodenmischproben wird das Material der **BMP 1** aus **Au- elehm** und **Schwemmlöss**, entsprechend der Verwaltungsvorschrift VwV des UM Baden-Württemberg, 2007, als **Z0** eingestuft.

Anfallender Bodenaushub darf uneingeschränkt in bodenähnlichen Anwendungen und zur Verfüllung von Abgrabungen verwendet werden.

Die Eluatwerte sämtlicher Schwermetalle liegen ebenfalls unterhalb der Zuordnungswerte und werden als **Z0** eingestuft.

Die Bodenkennwerte der Bodenschutzverordnung (BBodschV) für den Wirkungspfad Boden-Mensch werden für Wohngebiete und Kinderspielflächen eingehalten.

Die Analysen der Bodenmischproben dienen der Vordeklaration. Bei Entsorgung von Erdaushub, beispielsweise auf einer Deponie, können ggf. weitere Analysen anfallen.

10 Abschließende Bemerkungen

Im vorliegenden Gutachten wurden die für den geplanten Neubau von nichtunterkellerten Ferienlodges, Oberer Gallenweilerweg, 79219 Staufen im Breisgau, Flurstück 1452, befindlichen Untergrundund Grundwasserverhältnisse auf der Grundlage des angebotenen Untersuchungsumfanges und der uns zur Verfügung stehenden Unterlagen beschrieben und beurteilt, sowie bautechnische Folgerungen zum derzeitigen Planungsstand abgeleitet.

Die Beschreibung, Klassifizierung und Beurteilung der Untergrundverhältnisse erfolgte auf der Grundlage der Rammkernsondierungen und gilt strenggenommen nur für diese Aufschlüsse.

Da Lössböden unter Belastung thixotrop (belastungsempfindlich) reagieren können, wird darauf hingewiesen, dass die Baugrubensohle so wenig wie möglich mit schwerem Gerät befahren oder mit dynamischer Verdichtung bearbeitet werden und die Baugrubensohle vor Nässe geschützt werden sollte.

Der Bodengutachter sollte zur Sohlabnahme herangezogen werden.

Ergeben sich Fragen, die im vorliegenden Gutachten nicht, oder nicht ausreichend erörtert wurden, stehen wir Ihnen jederzeit gerne mit unserer Fachkenntnis zur Verfügung.

Freiburg, den 14.04.2023

Jörg Ruppenthal, Diplom Geologe (Projektleiter) Marius Ulbrich, M.Sc. Geology (Projektbearbeiter)

Zusammenfassung

Bauwerk: Neubau Ferienlodges

geplante FUK: nicht bekannt

geotechnische Kategorie: GK 1

Geologischer Untergrundaufbau m u. GOK:

Auffüllung (GU): /-/-/-0,0-2,7/-

Mutterboden (OU): 0,0-0,4

Auelehm (TL): 0,4-1,0/-/-/-/Schwemmlöss (UL): 1,0-3,5/-/-/-/-/-

Lösslehm (UL): -/0,4-1,0/0,4-0,9/0,4-1,1/0,4-1,1/0,4-1,3/-/0,4-1,0

Löss (UL/SU*): jeweils bis 3,5 m (ET)

Hydrogeologische Situation:

Grundwasser: kein Grundwasser angetroffen

Bemessungswasserstand (HHW): GOK

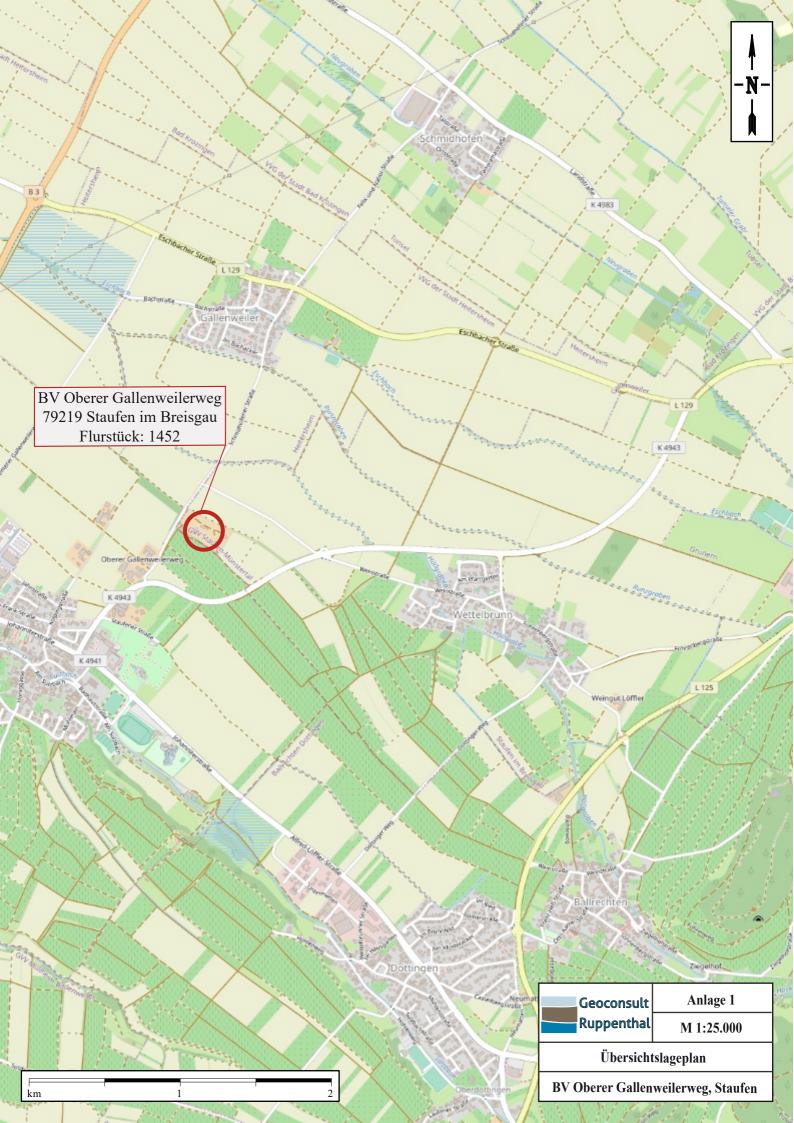
Durchlässigkeitsbeiwert (k_f): 1,07 x 10⁻⁵ m/s

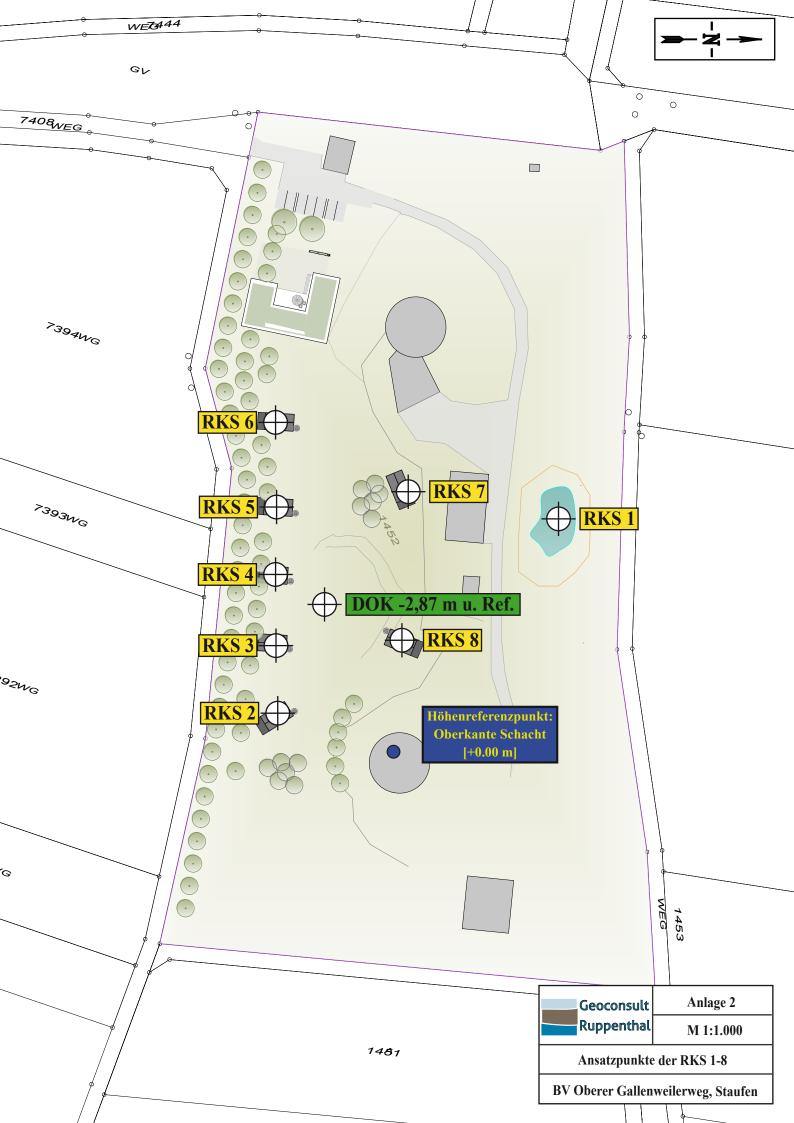
Frostempfindlichkeitsklasse:

Auelehm (TL)_ F3 sehr frostempfindlich Schwemmlöss (UL): F3 sehr frostempfindlich Lösslehm (UL): F3 sehr frostempfindlich Löss (UL/SU*): F3 sehr frostempfindlich

Geotechnische Kennwerte der Tragschicht Löss (UL/SU*)):

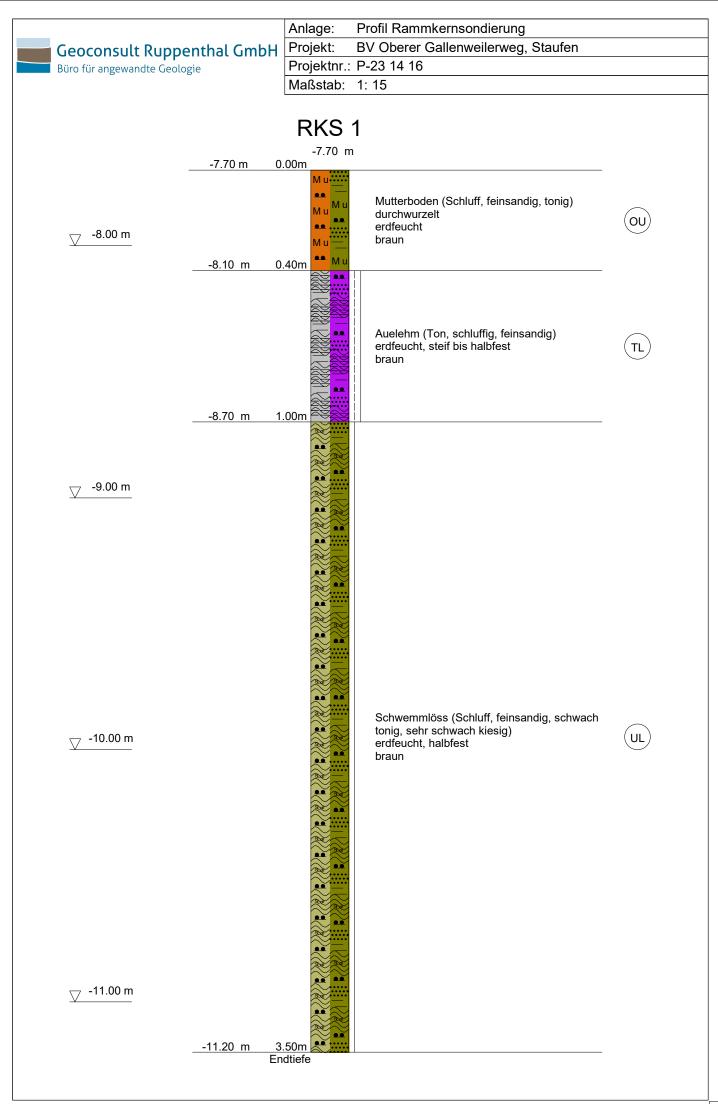
Wichte: $cal \gamma / cal \gamma'$: 17,5-21,0 / 9,0-11,0 kN/m³

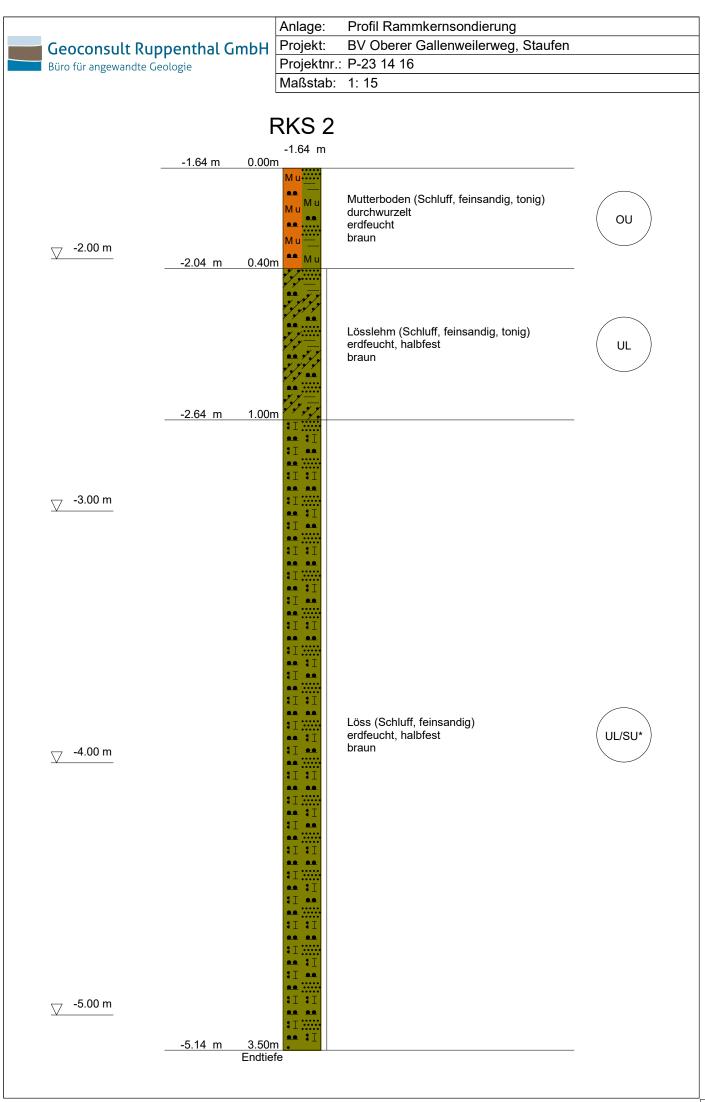

Reibungswinkelcal φ:28-35°Kohäsion:cal c':5-10 kN/m²Steifemodul:cal Es:20-50 MN/m²

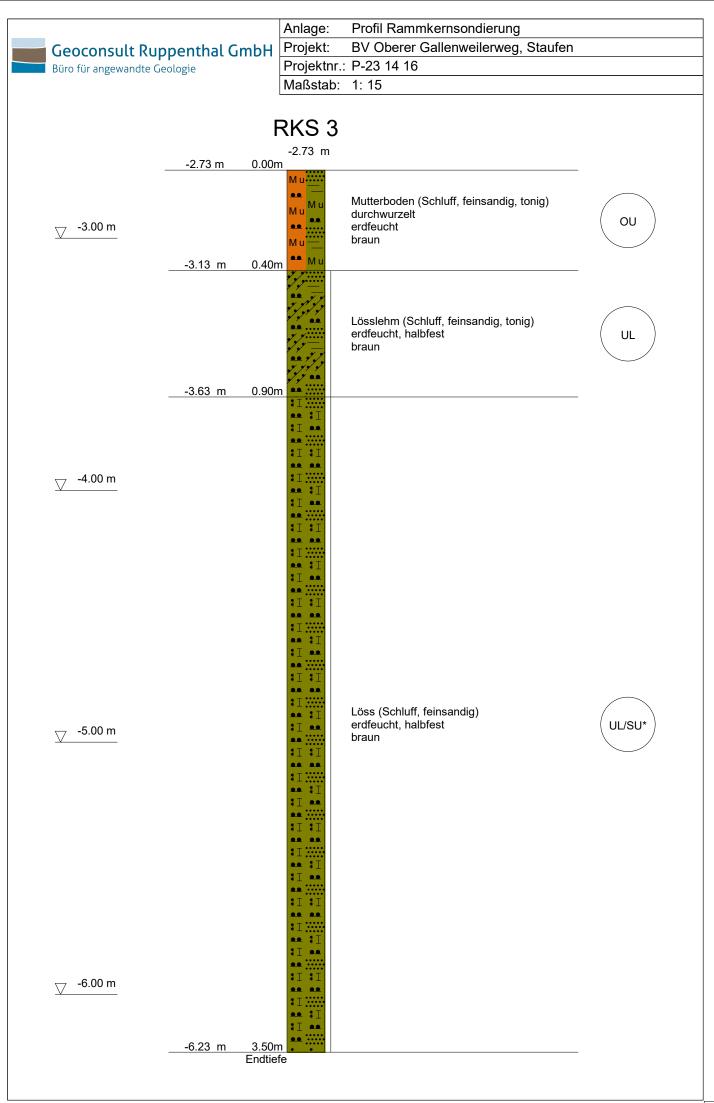

Bettungsziffern / Setzungsbetrag: $ks = 9.4 \text{ MN/m}^3$ $s \le 0.3 \text{ cm}$

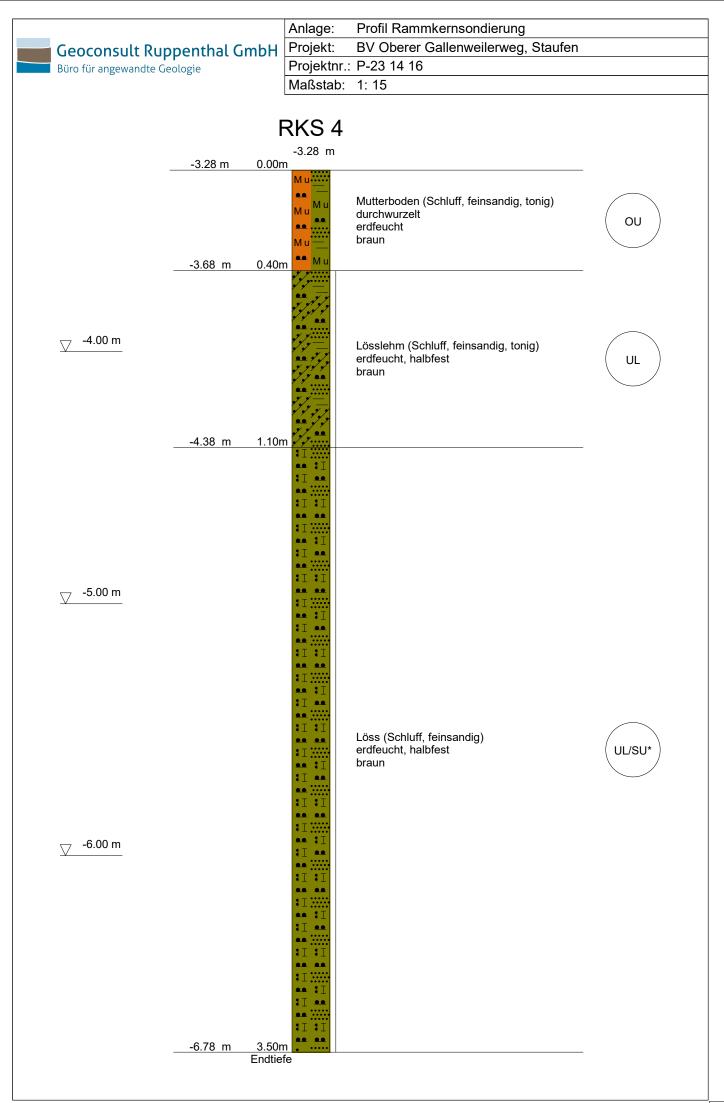
Erdbebenzone: 2; 0,6 m/s²; S; C

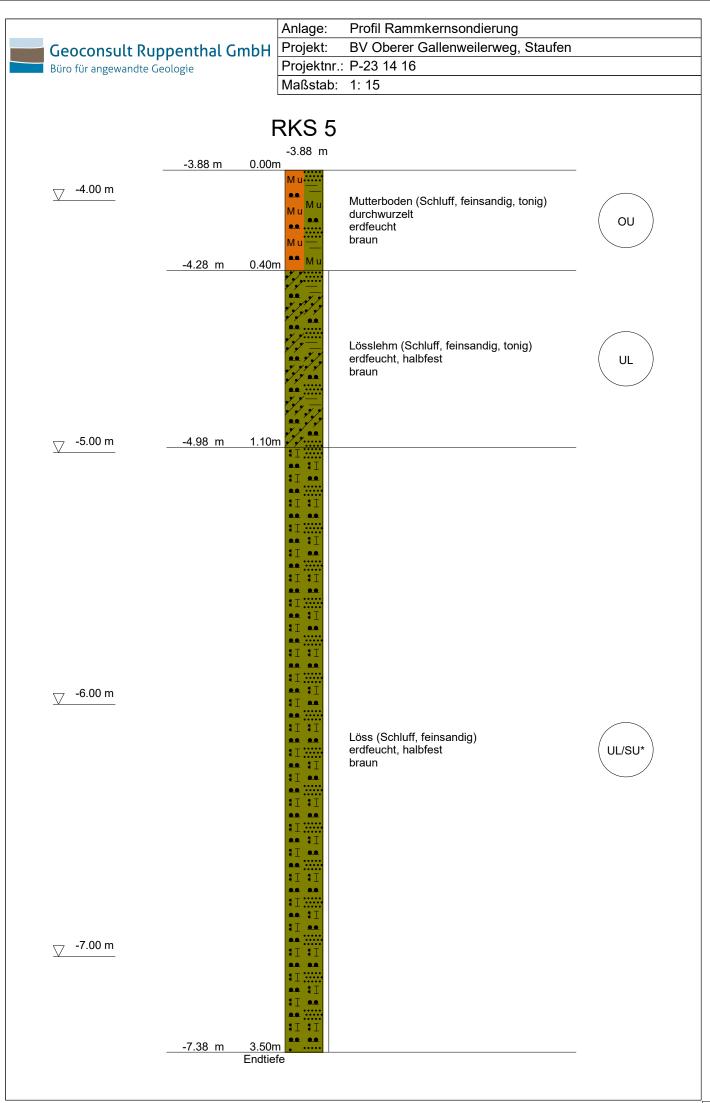
Entsorgungsrelevanz: Z0

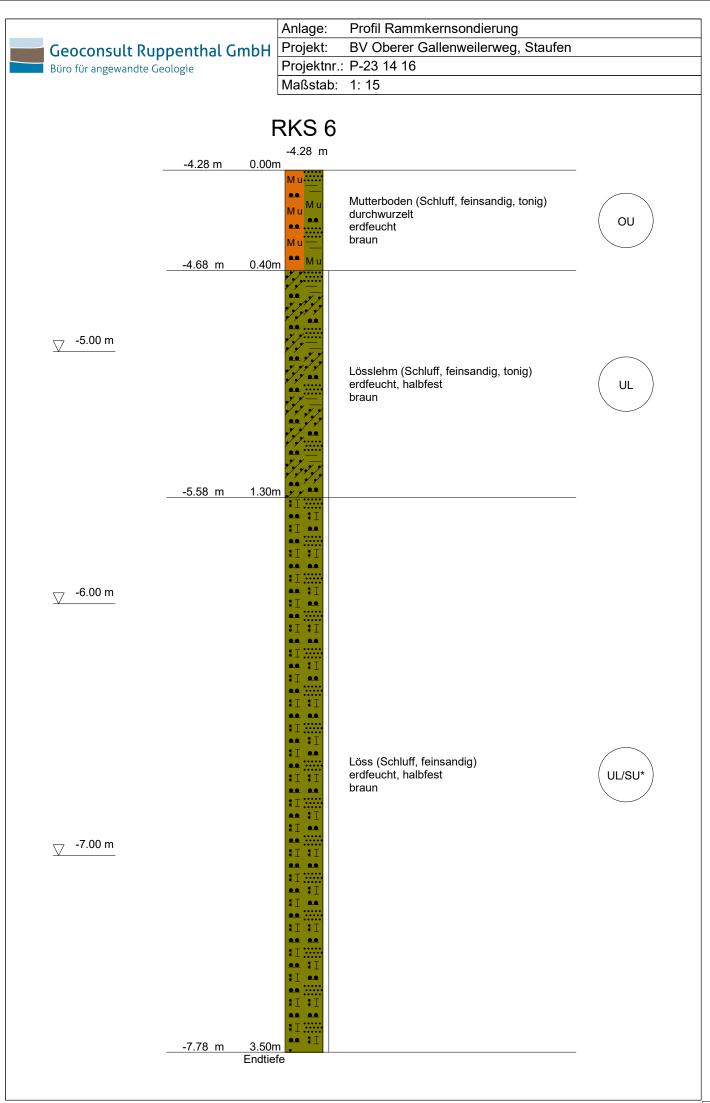

ANLAGEN

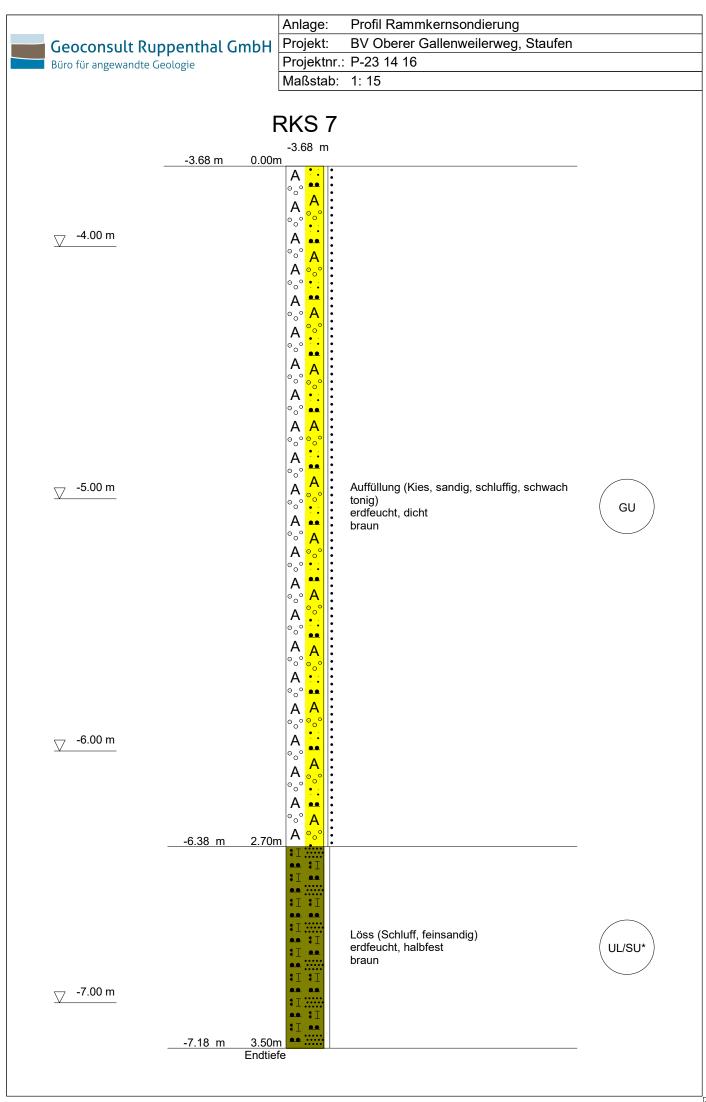


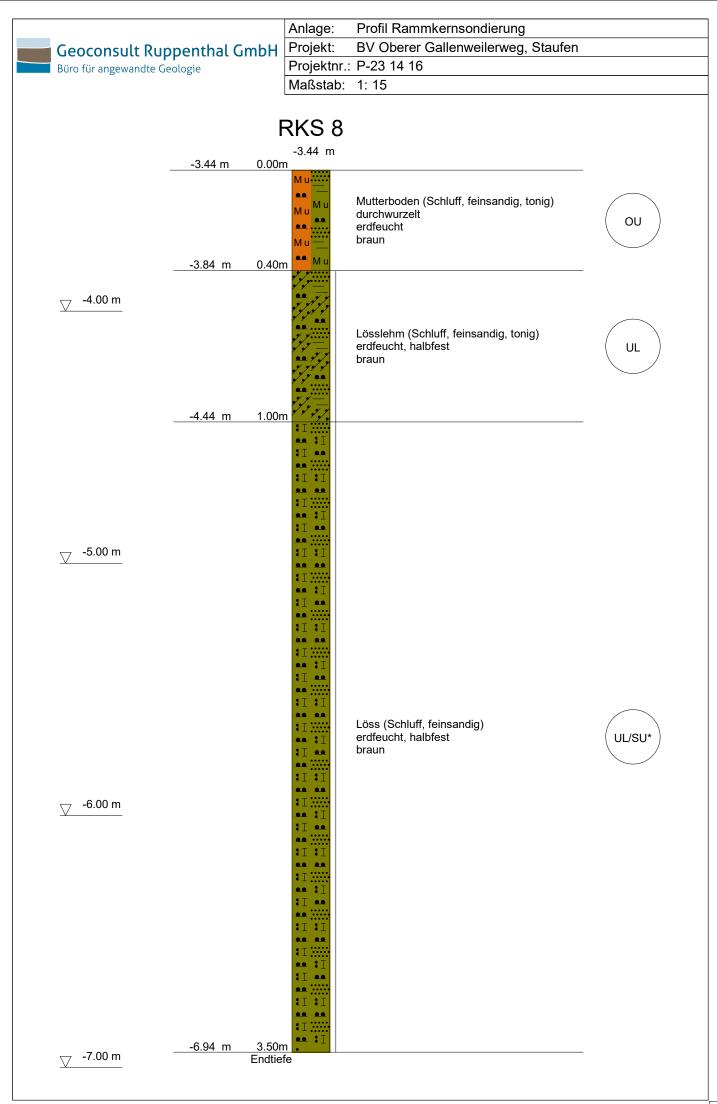


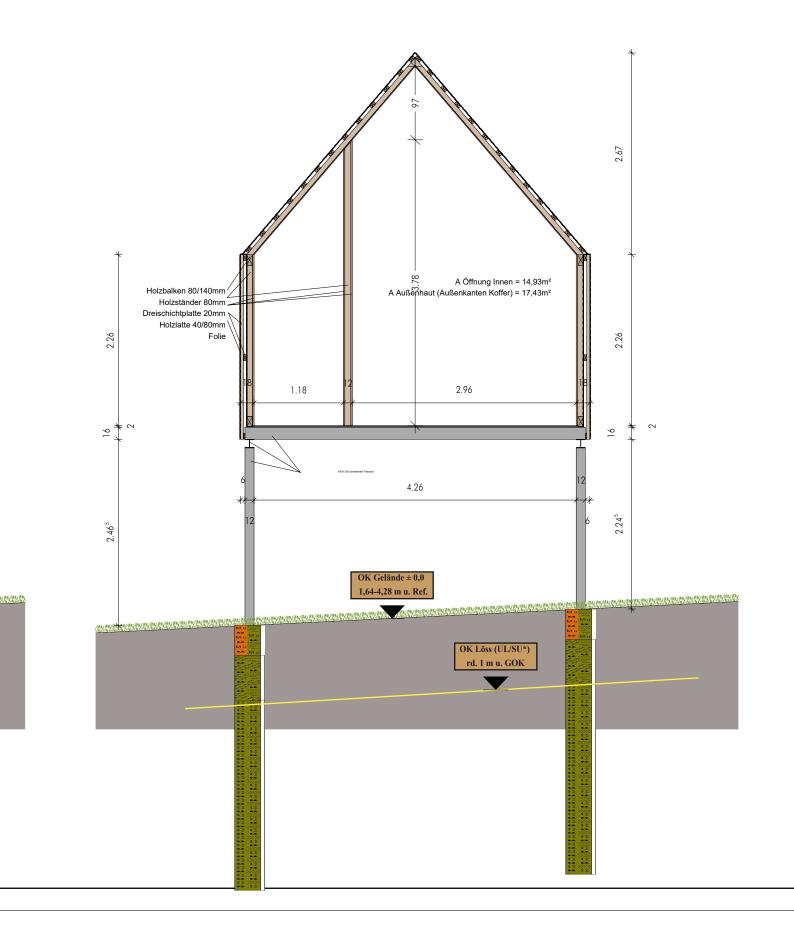

ANLAGE 3


Profile der Rammkernsondierungen 1-8







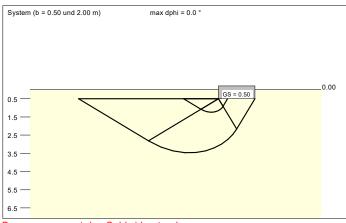


Geoconsult Ruppenthal									
Profilschnitt (Schni	Profilschnitt (Schnitt Lodges Varianten)								
BV Oberer Gallenweilerweg, Staufen									

ANLAGE 5

Bemessung Einzel- und Streifenfundamente

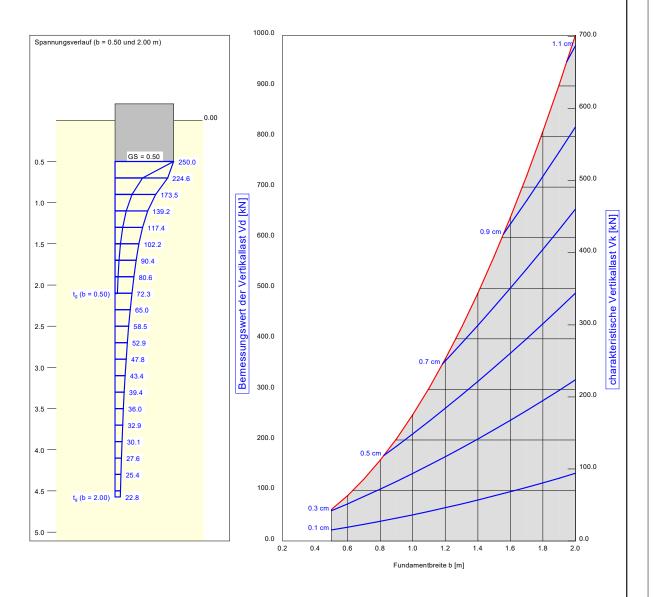
Bemessung Einzelfundament


Boden	γ [kN/m³]	γ' [kN/m³]	φ [°]	c [kN/m²]	E_s [MN/m 2]	v [-]	Bezeichnung
	17.5	9.0	28.0	5.0	20.0	0.00	Löss (UL/SU*, halbfest)

Berechnungsgrundlagen: BV Oberer Gallenweilerweg, Staufen im Breisgau Norm: EC 7

Grundbruchformel nach DIN 4017:2006 Teilsicherheitskonzept (EC 7) Einzelfundament (a/b = 1.00)

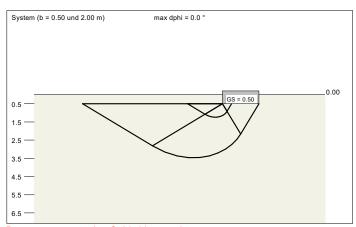
 $\gamma_{R,v} = 1.40$ $\gamma_{G} = 1.35$


 γ_Q = 1.50 Anteil Veränderliche Lasten = 0.500 $\begin{array}{l} \gamma_{(G,Q)} = 0.500 \cdot \gamma_Q + (1 - 0.500) \cdot \gamma_G \\ \gamma_{(G,Q)} = 1.425 \\ \sigma_{R,d} \text{ auf } 250.00 \text{ kN/m}^2 \text{ begrenzt} \\ \text{Gründungssohle} = 0.50 \text{ m} \\ \text{Grundwasser} = 10.00 \text{ m} \\ \text{Grenztiefen mit p} = 20.0 \% \\ \hline \frac{\text{Grenztiefen spannungsvariabel bestimmt}}{\text{Einzellast}} \\ \text{Setzungen} \end{array}$

Bemessungswert des Sohlwiderstands

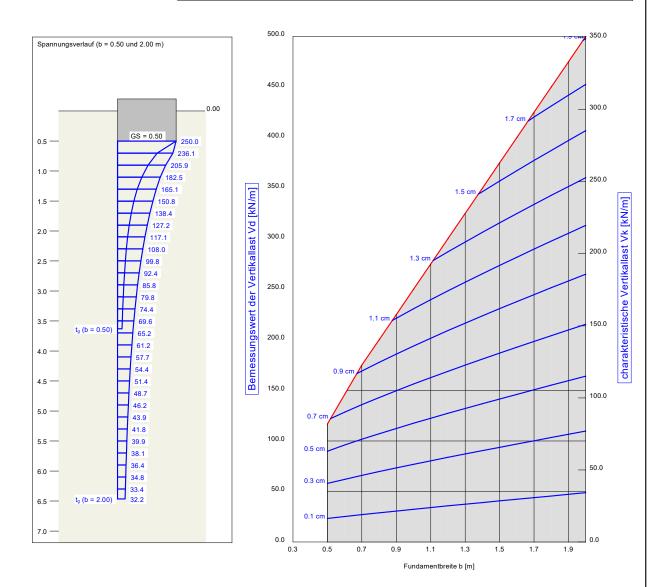
a [m]	b [m]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	zul σ/σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ ₀ [kN/m²]	t _g [m]	UK LS [m]
0.50	0.50	250.0	62.5	175.4	0.31	28.0	5.00	17.50	8.75	2.10	1.24
0.60	0.60	250.0	90.0	175.4	0.37	28.0	5.00	17.50	8.75	2.32	1.39
0.70	0.70	250.0	122.5	175.4	0.43	28.0	5.00	17.50	8.75	2.53	1.54
0.80	0.80	250.0	160.0	175.4	0.49	28.0	5.00	17.50	8.75	2.72	1.68
0.90	0.90	250.0	202.5	175.4	0.54	28.0	5.00	17.50	8.75	2.91	1.83
1.00	1.00	250.0	250.0	175.4	0.60	28.0	5.00	17.50	8.75	3.08	1.98
1.10	1.10	250.0	302.5	175.4	0.65	28.0	5.00	17.50	8.75	3.25	2.13
1.20	1.20	250.0	360.0	175.4	0.71	28.0	5.00	17.50	8.75	3.42	2.28
1.30	1.30	250.0	422.5	175.4	0.76	28.0	5.00	17.50	8.75	3.58	2.42
1.40	1.40	250.0	490.0	175.4	0.82	28.0	5.00	17.50	8.75	3.73	2.57
1.50	1.50	250.0	562.5	175.4	0.87	28.0	5.00	17.50	8.75	3.88	2.72
1.60	1.60	250.0	640.0	175.4	0.92	28.0	5.00	17.50	8.75	4.03	2.87
1.70	1.70	250.0	722.5	175.4	0.97	28.0	5.00	17.50	8.75	4.17	3.02
1.80	1.80	250.0	810.0	175.4	1.02	28.0	5.00	17.50	8.75	4.31	3.16
1.90	1.90	250.0	902.5	175.4	1.08	28.0	5.00	17.50	8.75	4.44	3.31
2.00	2.00	250.0	1000.0	175.4	1.13	28.0	5.00	17.50	8.75	4.57	3.46

zul $\sigma = \sigma_{E,k} = \sigma_{0f,k} / \left(\gamma_{R,v} \cdot \gamma_{(G,0)}\right) = \sigma_{0f,k} / (1.40 \cdot 1.43) = \sigma_{0f,k} / 1.99$ (für Setzungen) Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50



Bemessung Streifenfundament

Boden	γ [kN/m³]	γ' [kN/m³]	φ [°]	c [kN/m²]	E_s [MN/m 2]	ν [-]	Bezeichnung
	17.5	9.0	28.0	5.0	20.0	0.00	Löss (UL/SU*, halbfest)


Berechnungsgrundlagen: $\gamma_{(G,Q)} = 0.500 \cdot \gamma_Q + (1 - 0.500) \cdot \gamma_G$ BV Oberer Gallenweilerweg, Staufen im Breisgau $\gamma_{(G,Q)} = 1.425$ $\sigma_{R,d}$ auf 250.00 kN/m² begrenzt Gründungssohle = 0.50 m Norm: EC 7 Grundbruchformel nach DIN 4017:2006 Teilsicherheitskonzept (EC 7) Grundwasser = 10.00 m Streifenfundament (a = 10.00 m) Grenztiefe mit p = 20.0 % $\gamma_{R,v} = 1.40$ Grenztiefen spannungsvariabel bestimmt $\gamma_{\rm G} = 1.35$ Streifenlast $\gamma_{Q} = 1.50$ Setzungen Anteil Veränderliche Lasten = 0.500

Bemessungswert des Sohlwiderstands

a [m]	b [m]	σ _{R,d} [kN/m²]	R _{n,d} [kN/m]	zul σ/σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ _Ū [kN/m²]	t _g [m]	UK LS [m]
10.00	0.50	233.5	116.8	163.9	0.67	28.0	5.00	17.50	8.75	3.63	1.24
10.00	0.60	243.3	146.0	170.7	0.81	28.0	5.00	17.50	8.75	3.97	1.39
10.00	0.70	250.0	175.0	175.4	0.94	28.0	5.00	17.50	8.75	4.27	1.54
10.00	0.80	250.0	200.0	175.4	1.03	28.0	5.00	17.50	8.75	4.50	1.68
10.00	0.90	250.0	225.0	175.4	1.12	28.0	5.00	17.50	8.75	4.72	1.83
10.00	1.00	250.0	250.0	175.4	1.21	28.0	5.00	17.50	8.75	4.92	1.98
10.00	1.10	250.0	275.0	175.4	1.29	28.0	5.00	17.50	8.75	5.11	2.13
10.00	1.20	250.0	300.0	175.4	1.37	28.0	5.00	17.50	8.75	5.29	2.28
10.00	1.30	250.0	325.0	175.4	1.44	28.0	5.00	17.50	8.75	5.46	2.42
10.00	1.40	250.0	350.0	175.4	1.52	28.0	5.00	17.50	8.75	5.62	2.57
10.00	1.50	250.0	375.0	175.4	1.59	28.0	5.00	17.50	8.75	5.78	2.72
10.00	1.60	250.0	400.0	175.4	1.66	28.0	5.00	17.50	8.75	5.93	2.87
10.00	1.70	250.0	425.0	175.4	1.72	28.0	5.00	17.50	8.75	6.07	3.02
10.00	1.80	250.0	450.0	175.4	1.79	28.0	5.00	17.50	8.75	6.21	3.16
10.00	1.90	250.0	475.0	175.4	1.85	28.0	5.00	17.50	8.75	6.34	3.31
10.00	2.00	250.0	500.0	175.4	1.91	28.0	5.00	17.50	8.75	6.46	3.46

zul $\sigma = \sigma_{E,k} = \sigma_{0f,k} / (\gamma_{R,v} \cdot \gamma_{(G,Q)}) = \sigma_{0f,k} / (1.40 \cdot 1.43) = \sigma_{0f,k} / 1.99$ (für Setzungen) Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

ANLAGE 6

Sickerversuch SV 1

Infiltrationsversuch zur kf-Wert Bestimmung

Methode:	offenes	Rohrloch	nach	Farth	Manual
MICHIOGO.	Ullelles		Hach	Lailii	manuai

Projekt:	BV Oberer Gallenweilerweg, Staufen im Breisgau
Projektnummer:	P-23 14 16
Datum:	13.03.2023
Mitarbeiter:	ми
Versuch Nr.	SV 1

Im Bohrloch mit Aufstauhöhe h und Radius r wird durch Wasserzufluß ein konstanter Pegel mit Abstand H zum Grundwasser gehalten. Über die Schüttung Q [m³/s] im beharrten Zustand wird der kf-Wert berechnet:

Liter: Sekunden:	l: s:	12,6 300
Schüttung Aufstauhöhe Radius Abstand GW	Q [m³/s]: h [m]: r [m]: H [m]:	4,20E-05 3 0,025 10
Prüfen der Eingangsbedingu	ng h/r >= 10:	gültig
1 Formel kf:(H >3h)	5,35E-06	WAHR
2 Formel kf h <= H <= 3h	5,82E-07	FALSCH

3,27E-08

FALSCH

3 Formel kf:H < h

ANLAGE 7

Analyseergebnisse

Seite 1 von 5

Eurofins Umwelt Südwest GmbH - Hasenpfühlerweide 16 - DE-67346 Speyer

Geoconsult Ruppenthal GmbH Büro für angewandte Geologie Ellen-Gottlieb-Straße 15 79106 Freiburg

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-23-JN-003207-01 vom 29.03.2023 aufgrund von Änderung der Messergebnisse.

Titel: Prüfbericht zu Auftrag 02306707

EOL Auftragsnummer: 006-10544-28618
Prüfberichtsnummer: AR-23-JN-003207-02

Auftragsbezeichnung: BV Oberer Gallenweiler Weg, Staufen

Anzahl Proben: 1

Probenart: Boden
Probenahmedatum: 13.03.2023

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 15.03.2023

Prüfzeitraum: 15.03.2023 - 12.04.2023

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Die Ergebnisse beziehen sich in diesem Fall auf die Proben im Anlieferungszustand. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Anhänge:

XML_Export_AR-23-JN-003207-02.xml

Markus Ubl Digital signiert, 14.04.2023

Prüfleitung Sebastian Mempel

Niederlassungsleitung

+49 6232 8767722

Umwelt

Parameter					Probenbeze	ichnung	BMP 1
Parameter					Probenahmedatum/ -zeit EOL Probennummer		13.03.2023 005-10544- 121762 023024226
Parameter							
Probenvorbereitung Feststoffe Probenmenge inkl. ANIT L8 DIN 19747: 2009-07 kg 3,1 Fremdstoffe (Art) ANIT L8 DIN 19747: 2009-07 keine keine Fremdstoffe (Menge) ANIT L8 DIN 19747: 2009-07 g 0,0 Siebrückstand > 10mm ANIT L8 DIN 19747: 2009-07 0,1 % < 0,1 Königswasseraufschluss ANIT L8 DIN 19747: 2009-07 0,1 % < 0,1 Königswasseraufschluss ANIT L8 DIN 19747: 2009-07 0,1 % < 0,1 Königswasseraufschluss ANIT L8 DIN EN 13657: 2003-01 X X Physikalisch-chemische Kenngrößen aus der Originalsubstanz Trockenmasse ANIT L8 DIN EN 150 1739-200-3 0,1 Ma% 85,1 Anionen aus der Originalsubstanz Trockenmasse ANIT L8 DIN EN 150 1729-2 0,8 mg/kg TS 12,2 Elemente aus dem Königswasseraufschluss nach DIN EN 150 1729-2 0,8 mg/kg TS 12,2							
Probenmenge inkl. Verpackung	Parameter	Lab.	Akkr.	Methode	BG	Einheit	
Verpackung	Probenvorbereitung Feststo	ffe					
Fremdstoffe (Menge)	_	AN/f	L8	DIN 19747: 2009-07		kg	3,1
Siebrückstand > 10mm	Fremdstoffe (Art)	AN/f	L8	DIN 19747: 2009-07			keine
Fremdstoffe (Anteil)	Fremdstoffe (Menge)	AN/f	L8	DIN 19747: 2009-07		g	0,0
Königswasseraufschluss	Siebrückstand > 10mm	AN/f	L8	DIN 19747: 2009-07			nein
Physikalisch-chemische Kenngrößen aus der Originalsubstanz	Fremdstoffe (Anteil)	AN/f	L8	DIN 19747: 2009-07	0,1	%	< 0,1
Trockenmasse	Königswasseraufschluss	AN/f	L8	DIN EN 13657: 2003-01			Х
Anionen aus der Originalsubstanz Cyanide, gesamt ANIT L8 DIN ISO 17380: 2013-10 0,5 mg/kg TS < 0,5 Elemente aus dem Königswasseraufschluss nach DIN EN 13657: 2003-01 [#] Arsen (As) ANIT L8 DIN EN ISO 17294-2 0,8 mg/kg TS 12,2 Blei (Pb) ANIT L8 DIN EN ISO 17294-2 2 mg/kg TS 50 Cadmium (Cd) ANIT L8 DIN EN ISO 17294-2 0,2 mg/kg TS 0,3 Chrom (Cr) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 0,3 Kupfer (Cu) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 18 Kupfer (Cu) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 18 Nickel (Ni) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 18 Nickel (Ni) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 18 Nickel (Ni) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 33 Quecksilber (Hg) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 33 Quecksilber (Hg) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 33 Quecksilber (Hg) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS 30,0,07 Thallium (Ti) ANIT L8 DIN EN ISO 17294-2 0,0 nor mg/kg TS < 0,0,07 Thallium (Ti) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,0,2 Zink (Zn) ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,0,2 EOX ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,2 (E29): 2017-01 1 mg/kg TS < 0,2 EOX ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,2 EOX ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,2 EOX ANIT L8 DIN EN ISO 17294-2 1 mg/kg TS < 0,0 Organische Summenparameter aus der Originalsubstanz EOX ANIT L8 DIN EN 14039: 2017-01 1 ng/kg TS < 40 EOX Kohlenwasserstoffe C10-C22 ANIT L8 2005-01/LAGA KW/04: 2019-09 BTEX und aromatische Kohlenwasserstoffe aus der Originalsubstanz Benzol ANIT L8 DIN EN ISO 22155: 2016-07 Toluol ANIT L8 DIN EN ISO 22155: 0,05 mg/kg TS < 0,05 Ethylbenzol ANIT L8 DIN EN ISO 22155: 2016-07 On EN ISO 22155	Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz		
Cyanide, gesamt	Trockenmasse	AN	L8	DIN EN 14346: 2007-03	0,1	Ma%	85,1
Elemente aus dem Königswasseraufschluss nach DIN EN 13657: 2003-01# Arsen (As)	Anionen aus der Originalsul	bstanz	z	•			
Arsen (As) Anvit L8	Cyanide, gesamt	AN/f	L8	DIN ISO 17380: 2013-10	0,5	mg/kg TS	< 0,5
Arsen (As) Anvit L8	Elemente aus dem Königsw	asser	aufsch	lluss nach DIN EN 1	3657: 2003-0)1#	
Selet (Pb)	_			DIN EN ISO 17294-2 (E29): 2017-01			12,2
Cadmium (Cd) AN/f L8 DIN EN ISO 17294-2 (E29): 2017-01 0,2 mg/kg TS 0,3 Chrom (Cr) AN/f L8 DIN EN ISO 17294-2 (E29): 2017-01 1 mg/kg TS 33 Kupfer (Cu) AN/f L8 DIN EN ISO 17294-2 (E29): 2017-01 1 mg/kg TS 18 Nickel (Ni) AN/f L8 DIN EN ISO 17294-2 (E29): 2017-01 1 mg/kg TS 33 Quecksilber (Hg) AN/f L8 DIN EN ISO 17294-2 (E29): 2017-01 0,07 mg/kg TS < 0,07	Blei (Pb)	AN/f	L8		2	mg/kg TS	50
Chrom (Cr)	Cadmium (Cd)	AN/f	L8	DIN EN ISO 17294-2	0,2	mg/kg TS	0,3
Nickel (Ni)	Chrom (Cr)	AN/f	L8	(E29): 2017-01	1	mg/kg TS	33
Nicket (Ni)	Kupfer (Cu)	AN/f	L8	(E29): 2017-01	1	mg/kg TS	18
Color Colo	Nickel (Ni)	AN/f	L8	(E29): 2017-01	-	mg/kg TS	33
Zink (Zn)	Quecksilber (Hg)	AN/f	L8	2012-08	0,07	mg/kg TS	< 0,07
Companische Summenparameter aus der Originalsubstanz	Thallium (TI)	AN/f	L8	(E29): 2017-01	0,2	mg/kg TS	< 0,2
EOX	Zink (Zn)	AN/f	L8		1	mg/kg TS	58
Columbia	Organische Summenparame	eter au	ıs der	Originalsubstanz			
Kohlenwasserstoffe C10-C22 AN/f L8 2005-01/LAGA KW/04: 2019-09 40 mg/kg TS < 40	EOX	AN/f	L8	2017-01	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C40 AN/f L8 2005-01/LAGA KW/04: 2019-09 40 mg/kg TS < 40 BTEX und aromatische Kohlenwasserstoffe aus der Originalsubstanz Benzol AN/f L8 DIN EN ISO 22155: 2016-07 0,05 mg/kg TS < 0,05	Kohlenwasserstoffe C10-C22	AN/f	L8	2005-01/LAGA KW/04:	40	mg/kg TS	< 40
Benzol AN/f L8 DIN EN ISO 22155: 2016-07 0,05 mg/kg TS < 0,05 Toluol AN/f L8 DIN EN ISO 22155: 2016-07 0,05 mg/kg TS < 0,05	Kohlenwasserstoffe C10-C40	AN/f	L8	2005-01/LAGA KW/04:	40	mg/kg TS	< 40
Toluol	BTEX und aromatische Koh	lenwa	sserst	offe aus der Origina	alsubstanz		
Ethylbenzol AN/f L8 2016-07 0,05 mg/kg TS < 0,	Benzol	AN/f	L8		0,05	mg/kg TS	< 0,05
Ethylbenzol AN/f L8 2016-07 0,05 mg/kg TS < 0,05 m-/-p-Xylol AN/f L8 DIN EN ISO 22155: 2016-07 0,05 mg/kg TS < 0,05 mg/kg TS < 0,05	Toluol	AN/f	L8		0,05	mg/kg TS	< 0,05
111-7-p-Aylol AN/I L8 2016-07 0,05 111g/kg 15 < 0,05	Ethylbenzol	AN/f	L8		0,05	mg/kg TS	< 0,05
DIN EN ISO 22155: " "	m-/-p-Xylol	AN/f	L8	2016-07	0,05	mg/kg TS	< 0,05
0-Xy101 AN/T L8 2016-07 0,05 mg/kg 15 < 0,05	o-Xylol	AN/f	L8		0,05	mg/kg TS	< 0,05
Summe BTEX AN/f L8 DIN EN ISO 22155: 2016-07 mg/kg TS (n. b.) 1	Summe BTEX	AN/f	L8			mg/kg TS	(n. b.) ¹⁾

				Probenbeze	ichnung	BMP 1
				Probenahme	13.03.2023 005-10544- 121762 023024226	
				EOL Proben		
				Probennummer		
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
LHKW aus der Originalsubs	tanz					
Dichlormethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
trans-1,2-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
cis-1,2-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Chloroform (Trichlormethan)	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1,1-Trichlorethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlormethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Trichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Tetrachlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,1-Dichlorethen	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
1,2-Dichlorethan	AN/f	L8	DIN EN ISO 22155: 2016-07	0,05	mg/kg TS	< 0,05
Summe LHKW (10 Parameter)	AN/f	L8	DIN EN ISO 22155: 2016-07		mg/kg TS	(n. b.) 1)
PAK aus der Originalsubsta	anz					
Naphthalin	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthylen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Acenaphthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Phenanthren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Chrysen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[b]fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[k]fluoranthen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[a]pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Indeno[1,2,3-cd]pyren	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Dibenzo[a,h]anthracen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Benzo[ghi]perylen	AN/f	L8	DIN ISO 18287: 2006-05	0,05	mg/kg TS	< 0,05
Summe 16 EPA-PAK exkl. BG	AN/f	L8	DIN ISO 18287: 2006-05		mg/kg TS	(n.b.)
Summe 15 PAK ohne Naphthalin exkl. BG	AN/f	L8	DIN ISO 18287: 2006-05		mg/kg TS	(n.b.)

Umwelt

				Probenbezei	chnung	BMP 1
				Probenahme	datum/ -zeit	13.03.2023
				EOL Proben	nummer	005-10544-
						121762
				Probennumr	ner	023024226
Parameter	Lab.	Akkr.	Methode	BG	Einheit	
PCB aus der Originalsubsta	nz					
PCB 28	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 52	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 101	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 153	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 138	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
PCB 180	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe 6 DIN-PCB exkl. BG	AN/f	L8	DIN EN 15308: 2016-12		mg/kg TS	(n.b.)
PCB 118	AN/f	L8	DIN EN 15308: 2016-12	0,01	mg/kg TS	< 0,01
Summe PCB (7)	AN/f	L8	DIN EN 15308: 2016-12		mg/kg TS	(n.b.)
Physchem. Kenngrößen au	us den	n 10:1-	Schütteleluat nach	DIN EN 1245	7-4: 2003-01	
pH-Wert	AN/f	L8	DIN EN ISO 10523 (C5): 2012-04			8,4
Temperatur pH-Wert	AN/f	L8	DIN 38404-4 (C4): 1976-12		°C	21,4
Leitfähigkeit bei 25°C	AN/f	L8	DIN EN 27888 (C8): 1993-11	5	μS/cm	113
Anionen aus dem 10:1-Schü	ittelelı	uat nac	ch DIN EN 12457-4:	2003-01		
Chlorid (CI)	AN/f	L8	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	1,2
Sulfat (SO4)	AN/f	L8	DIN EN ISO 10304-1 (D20): 2009-07	1,0	mg/l	1,5
Cyanide, gesamt	AN/f	L8	DIN EN ISO 14403-2: 2012-10	0,005	mg/l	< 0,005
Elemente aus dem 10:1-Sch	üttele	luat na	ch DIN EN 12457-4	: 2003-01		
Arsen (As)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Blei (Pb)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Cadmium (Cd)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,0003	mg/l	< 0,0003
Chrom (Cr)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Kupfer (Cu)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,005	mg/l	< 0,005
Nickel (Ni)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,001	mg/l	< 0,001
Quecksilber (Hg)	AN/f	L8	DIN EN ISO 12846 (E12): 2012-08	0,0002	mg/l	< 0,0002
Zink (Zn)	AN/f	L8	DIN EN ISO 17294-2 (E29): 2017-01	0,01	mg/l	< 0,01
Org. Summenparameter aus dem 10:1-Schütteleluat nach DIN EN 12457-4: 2003-01						
Phenolindex, wasserdampfflüchtig	AN/f	L8	DIN EN ISO 14402 (H37): 1999-12	0,01	mg/l	< 0,01
			l .		l	

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

X - durchgeführt

Heizblock-Aufschluss außer bei Untersuchungen im gesetzlich geregelten Bereich.

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von der Eurofins Umwelt West GmbH (Vorgebirgsstrasse 20, Wesseling) analysiert. Die Bestimmung der mit L8 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14078-01-00 akkreditiert.

/f - Die Analyse des Parameters erfolgte in Fremdvergabe.

¹⁾ nicht berechenbar